
Detecting Incorrect Wordpress Plugin
Function Usage

Jens Thomas Vejlby Nielsen
jtvn10@student.aau.dk

Computer Science 10th Semester Student Project
Aalborg University

Aalborg Universitet
Cassiopeia
Computer Science
Selma Lagerlöfs Vej 300
Phone 96 35 97 31
Fax 98 13 63 93
http://cs.aau.dk

Title: Detecting Incorrect Word-
press Plugin Function Usage

Project Period:
10th semester

Project Group:
des1010f15

Written by:

Jens Thomas Vejlby Nielsen

Supervisor: René Rydhof Hansen

Number of prints: 2

Number of pages: 28

Total pages: 45

Appendices: 5

Completed on: 03.06.2015

Abstract:

This thesis presents the problem of
incorrectly using either PHP build-in
or homemade functions for WordPress
plugin development. WordPress it-
self is created in a secure way, and
vulnerabilities are quickly corrected.
This is not the case for plugins, where
there can be a multitude of vulnerab-
ilities. WordPress supplies functions
for correctly sanitisation of data, along
with connecting to databases. Word-
Press allows the core functionality to
be changed by using filters and actions,
and if a developer forgets to close a fil-
ter this can have security and correct-
ness implications.
A proof-of-concept solution using the
nuXmv Model Checker on a WordPress
plugin model for finding incorrect func-
tion usage and open filters is presen-
ted. Tests of the tool show that it is
still clear that this is a proof-of-concept
solution.

The content of this rapport is freely accessible, but publication (with sources) is only allowed
with written consent from the author.

Summary

This thesis presents the problem of incorrectly using either PHP build-in or
homemade functions for WordPress plugin development, along with using fil-
ters and actions incorrectly. WordPress itself is created in a secure way, and
vulnerabilities are quickly corrected. This is not the case for plugins, where
there can be a multitude of vulnerabilities. WordPress supplies functions
for correctly sanitisation of data, along with connecting to databases,and
guidelines for how data should be processed. WordPress allows the core
functionality to be changed by using filters and actions, and if a developer
forgets to close a filter this can have security and correctness implications.

Model Checking is where a model of a system is created, and a number of
specification formulas is then used to verify the model. In this report Linear
Temporal Logic and Computation Tree Logic is used. One of the prominent
differences between the two logics is that CTL can reason about execution
paths, whereas LTL cannot, as LTL works on the whole model.

A proof-of-concept solution using the nuXmv Model Checker, which im-
plements CTL and LTL, on a WordPress plugin model for finding incorrect
function usage and open filters is presented. The tool automatically gener-
ates specifications for checking if any incorrect function is used, and if there
exists an open filter.

Tests of the tool show that it is still clear that this is a proof-of-concept
solution, yet it still manages to detect open filters.

Preface

This project is the result of a 10th semester Master thesis project conducted
by a student from the Department of Computer Science, Aalborg University.
The theme of this report is detecting incorrect function usage in WordPress
plugins.

• Citations will be on the form [x], where the number represents the place
in the bibliography in the back of the report.

• Code written in the report will be in the ttfamily font family.

• Broken lines are represented by a ê.

• ... marks omitted code.

I would like to thank Kenneth Jepsen, Morten Nørtoft and Mikkel Vej for
the code with which this project is based. Additionally, I would like to thank
René Rydhof Hansen for supervision and guidance during the project.

Contents

1 Introduction 3

2 WordPress 5
2.1 Securing WordPress . 6

2.1.1 Preventing Cross Site Scripting in WordPress 6
2.1.2 SQL Injections . 6

2.2 Actions and filters . 8

3 Model Checking 11
3.1 Linear Time Temporal Logic 12

3.1.1 Syntax . 12
3.1.2 Semantics . 13

3.2 Computation Tree Logic . 15
3.2.1 Semantics . 15

3.3 nuXmv . 16

4 Proof-of-concept solution 17
4.1 Parsing . 18
4.2 Creating the nuXmv model and formulas 21

4.2.1 Example . 23
4.3 Testing . 24

4.3.1 OpenFilter . 24
4.3.2 Form Maker . 25
4.3.3 Post Types Order . 25
4.3.4 Shortcodes Ultimate and WordPress SEO by Yoast . . 25

1

5 Conclusion 26

Bibliography 28

A Adding self-loops 29

B Creating the nuXmv model 31

C CTLLTLNode 38

D OpenFilter 39
D.1 OpenFilter code . 39
D.2 OpenFilter graph . 41
D.3 OpenFilter model . 42
D.4 OpenFilter nuXmv result . 43

E CD 45

2

1
Introduction

In recent years, a number of prominent web applications has been subjec-
ted to attacks by malicious attackers, namely Sony Entertainment [8], the
Washington Post [12], and the danish company CSC [11]. This is possible as
all these applications are connected to the Internet, and as such is reachable
from anywhere in the world. This shows that web application security is
very important, and since the applications are connected to the Internet, a
malicious attacker can attack at his/her leisure. Failure to properly secure a
web application can be extremely costly, as it was the case in the examples.
Another example is if a malicious attacker manages to gain entry into an
online bank, or gains unauthorised access to confidential information, such
as Social Security numbers, as was the case in the CSC hack. This shows
that it is important to ensure that only authorised access is allowed.

There exist a multitude of different languages for creating web applica-
tions, but the focus in this project will be on the PHP programming language,
since it is widely used for web development [9, 6, 10]. Often the hosting
providers supplies a stack containing the web server Apache, the language
interpreter PHP and the database system MySQL. Additionally, there exist
a number of frameworks for creating web applications in PHP, but in this
project the focus will be on the Content Management System WordPress, as
it is widely distributed, and estimated to power around 23 % of the top mil-
lion websites, along with being used as Content Management System (CMS)
on 60% of websites which uses CMS’s [19].

As such, it is important that WordPress is created securely, as it can be
quite costly if there is an error in the application. For example, a web shop
vulnerable to a SQL injection could lose funds if a malicious attacker could
place false orders, extract all customers, or change the prices.

3

WordPress is comprised of a core which in itself is created in a secure way,
with a lot of focus on security [19]. WordPress can be extended by using cus-
tom plugins and themes, and these are often not as secure as WordPress
itself. Not only that, but often plugin developers does not use the supplied
WordPress functions, for example for database access, but instead either uses
custom functions, or the PHP supplied ones. This can have security implic-
ations, and can cause incorrect usage, for example if a developer wishes to
allow some user-supplied HTML, but uses an incorrect sanitisation function,
then a Cross-Site-Scripting attack might be possible.

To detect the incorrect function usage, Model Checking can be used.
The goal of a Model Checker is to verify whether a given specification is
satisfies by a model. In this case, the Model is the WordPress plugin, and the
specification is written in Linear Temporal Logic (LTL) and/or Computation
Tree Logic (CTL). These logics can be used to reason about paths in a
program, for example by checking ”is there a path to a htmlspecialchars,
and for checking if there is a path from an opening of a filter to a closing
of a filter. For WordPress, the wrong function usage could be to check if
the escape methods htmlspecialchars,htmlentities etc. is reachable.
In WordPress, there is filters and actions, which can be used to modify an
existing function within WordPress, for example the upload_dir filter, which
specifies where a file is uploaded. Additionally, WordPress supplies functions
for uploading and checking files, using the filter upload_mimes for the allowed
filters. This can lead to a vulnerability, for example if a plugin enables the
uploading of PHP files, and forgets to close the filter after usage, in which
case every upload using the WordPress upload functions will allow PHP files.

WordPress will be further described in Chapter 2, and Model Checking
will be described in Chapter 3, and a proof-of-concept solution for finding
incorrect functions and open filters will be presented in Chapter 4. Finally,
Chapter 5 concludes the project.

4

2
WordPress

WordPress is a popular, free, open-source Content-Management System (CMS),
used by 23 % of the top 10 million websites, with an estimated market share
of 60 % of all websites using a CMS [19].

WordPress is run by a Core Leadership Team, consisting of five lead de-
velopers and a dozen core developers, along with a community of developers,
whom contribute to the development of WordPress. However, only the lead
developers and a selected number of community developers has commit ac-
cess.

To keep WordPress secure, there is a WordPress Security Team, con-
sisting of 25 experts, lead developers and security researchers, which manage
the WordPress security. To promote the detection of vulnerabilities in Word-
Press, it is possible to contact the WordPress security team, and any authors
of vulnerabilities will be given proper credit. If the vulnerability is severe,
the fix can be distributed immediately, or in an upcoming release.

To increase the security, WordPress has, in version 3.7, introduced auto-
matic updating of minor releases, such as 3.7.1 to 3.7.2. In this way, updates
to the WordPress core can be automatically distributed.

As the above describes, WordPress takes security very serious, and is
quick to patch any errors found in WordPress itself. However, this is not
the case for Plugins and Themes, where the response time can be longer.
Not only that, but often plugins are not created with security in mind, and
as such there can be quite a few vulnerabilities in the same plugin, and the
system is only as safe as the weakest link.

To assist the plugin developers in increasing the security of the plugins,
the WordPress core supplies sanitisation and escape functions for the OWASP

5

Top 10 [4], along with the best practices for how it is done in WordPress
[19, 15]. In the case where the WordPress Security Team fails to reach a
plugin developer, they might either patch the plugin themselves, or remove
it from the repository.

2.1 Securing WordPress
WordPress supplies API’s to protect, validate and sanitise data, along with
protection from the most popular attacks. In this section, it is described
how to prevent against the most popular attacks using WordPress. The
vulnerabilities is further described in my previous report [18].

2.1.1 Preventing Cross Site Scripting in WordPress
Cross Site Scripting is an attack in which a malicious piece of code is executed
on the client site. This can, for example, be used to steal the authentication
cookies for WordPress, or transfer data about the client(s).

For prevention, the PHP functions htmlspecialchars and htmlentitiesÐâ

can be used, but WordPress recommends using the WordPress specific escape
functions;

1. wp_kses is used to remove all untrusted HTML, and is used for data
validation before the data is added to the database.

2. esc_(html/textarea/attr) and sanitize_text_field is used to es-
cape when extracting the data from the database, and recommended
right before printing.

The benefit of using the WordPress specific functions as opposed to the
functions supplied by PHP, is that WordPress allows some HTML tags to
be used. As such, the client is not completely restricted from using HTML,
whereas this can cause security problems when the PHP functions is used, if
a mistake is made and the escaping is not done properly. Additionally, the
WordPress functions allows the direct printing and localisation of the results,
so that if a plugin author has added support for additional languages, then
the translation will be done seamlessly.

2.1.2 SQL Injections
An SQL injection is an attack in which the database query has been altered
by a malicious attacker to serve the attackers purpose. This could for example

6

be used to bypass login authentication, delete from the database, or extract
information.

For PHP, preventing SQL injections can be done either by escaping the in-
put, for example by using mysqli_real_escape_string. Another approach
is to use prepared statements. For WordPress, the esc_sql function can be
used to escape the input, but WordPress encourages the usage of the $wpdb
object for any and all database access. The $wpdb object contains a num-
ber of functions which will automatically escape all input, and a number of
functions in which the user will have to escape the input.

Functions that automatically escape input

The functions supplied by the $wpdb object is the recommended way for
interacting with the WordPress database in a secure way. The functions
which automatically sanitises input are;

1. $wpdb->insert($table, (array)$data, $format)

2. $wpdb->update($table, (array)$data, (array)$where)

3. $wpdb->replace($table, $data, $format)

4. $wpdb->delete($table, $where)

Where for example the $wpdb->insert can be used as seen in Listing 2.1.
In this example the post variables are input directly, as WordPress will ensure
that no SQL Injection happen.

In addition to the functions supplied by the $wpdb object, there exist a
number of functions for example for creating posts, getting/setting/deleting
users, options, posts, metadata and so on. As such, in most cases it is not
necessary to use the functions which does not automatically sanitise.

1 $wpdb->insert($wpdb->postmeta,
2 array('post_id' => $_POST['id'],
3 'meta_key' => $_POST['key'])
4);

Listing 2.1: Automatic Escaping

Functions that the user needs to escape

In addition to the functions that WordPress automatically escapes, there is
a number of functions in which it is the developers responsibility to properly

7

escape input, e.g. using esc_sql, $wpdb->prepare and/or esc_like. The
first function is used to escape a query, whereas the second one creates a
prepared statement from the wpdb object. The last function is used to escape
like clauses in queries. Some of the functions that the programmer has to
escape is;

1. $wpdb->get_var('query', column_offset, row_offset), used to
extract a single variable.

2. $wpdb->get_row('query', output_type, row_offset), used to ex-
tract a row.

3. $wpdb->get_col('query', column_offset), used to extract the
columns.

4. $wpdb->get_results('query', output_type), used for queries which
return a result.

5. $wpdb->query('query'), used for queries.

An example of unsafe function usage can be seen in Listing 2.2. In this
case, the ID variable can be set to what the attacker decides, and as such be
used for an SQL Injection attack. For securing the query, either the esc_sql
function can be used, or everything can be wrapped in a prepared statement,
as seen in Listing 2.3.

1 $wpdb->get_var("SELECT * FROM $wpdb->postmeta WHERE ID=$_POSTÐâ

['ID']");

Listing 2.2: Unsafe SQL Query

1 $wpdb->get_var($wpdb->prepare("SELECT * FROM $wpdb->postmeta Ðâ

WHERE ID=%s", $_POST['ID']));

Listing 2.3: Prepared Statement SQL Query

2.2 Actions and filters
Actions in WordPress allows one to hook into existing actions in WordPress,
for example the action which prints the title. This is accomplished using the
add_action function. Another example could be to hook into the published
posts and send an e-mail whenever a post is published, as seen in Listing 2.4.

8

The action is performed whenever the function with which it is registered
is executed, so in this case, it is executed whenever a user published a blog
post. In addition to adding actions, it is also possible to remove actions,
using the remove_action function. It is possible to create custom actions,
and these are executed using the do_action function.

1 function email_admin($post_ID) {
2 $admin = 'admin@example.org';
3 wp_mail($admin, "Blog updated", 'Please verify the new blog Ðâ

content: http://blog.example.com');
4 return $post_ID;
5 }
6 add_action('publish_post', 'email_admin');

Listing 2.4: Action example

Filters differ from actions in that they are used to modify existing func-
tionality, for example by replacing an existing hook. An example could be
to replace the allowed mime filter that WordPress uses when a file is up-
loaded. Filters are, like actions, added with the add_filter function, and
removed with the remove_filter function. Whenever a filter is added, once
the plugin is done with the filter it should remove the filter to avoid any
side-effects. Consider for example the plugin in Listing 2.5. The filter in this
case changes the allowed mime types to allow uploading of PHP files, which
by adding the filter will replace it for every upload operation in any part
of the site (that is, if it correctly uses the WordPress functions for upload-
ing media). This is an unfortunate side effect that can have major security
implications, as it has just become possible to upload any PHP file. The
solution to this is to remember to remove the filter after usage, in which case
the default filter will be used, so in the example this can be done by adding
remove_filter('upload_mimes, 'openfilter_upload_mimes') after line
17.

1 <?php
2 /*
3 Plugin Name: Open Filter
4 Description: Opens a filter for uploading PHP files - very Ðâ

vulnerable!
5 Version: 1.0
6 Author: Thomas Vejlby Nielsen
7 Author URI: http://jtvn.dk
8 */
9

10 function openfilter_upload_mimes ($existing_mimes=array()) {

9

11 $existing_mimes['php'] = 'file/php';
12 return $existing_mimes;
13 }
14

15 add_filter('upload_mimes', 'openfilter_upload_mimes');
16

17 //Do stuff that requires uploading PHP files using the WordPressÐâ

upload functions..

Listing 2.5: Filter example

10

3
Model Checking

For detecting the incorrect function usage, Model Checking can be used.
For constructing the model nuXmv [3] is used, and for verifying the model
Computation Tree Logic and Linear Temporal Logic is used. This chapter is
heavily based on Huth and Ryan [16].

When verifying models, there are a number of different approaches [16].

• Proof/Model based - a proof based approach is a set of formulas Γ,
and a specification φ, where the goal is to find a proof that Γ $ φ.
This often requires user-supplied assistance. A model based approach
models a system M and a specification φ that needs to be checked if it
satisfies the model, that is, M |ù φ. This can be automatic for finite
models.

• The degree of automation - how automatic the verification approach
can be, ranging from fully automatic to fully manual. Often computer-
assisted verification tools are somewhere in the middle.

• Full vs property-verification - the specification may describe a
single property, or the whole system, which can be quite expensive
to verify.

• Domain of application - whether it is hardware or software; sequen-
tial or concurrent, and whether it is reactive, which means that the
system is made to not terminate, or terminating, in which case the
system eventually terminates.

• Pre and post-development - The verification approach has a greater
advantage the earlier it is introduced, as errors are more expensive the

11

later they are caught.

A Model Checker is a model based, automatic, property-verification ap-
proach, intended to be uses for reactive concurrent systems in a post-development
methodology. Model Checkers are based on temporal logic, which means that
the the model consists of several states, and a formula which can be true in
some states, and false in others as the model transitions between states.
The temporal logics used in this thesis is the Linear Time Temporal Logic,
described in section 3.1 and Computation Tree logic, described in section 3.2.

The models M are transition systems, and the properties φ are formulas
in temporal logic, and so to verify that a system satisfies a property, that is,
if it is the case that a model satisfies a specification (M |ù φ), then a Model
Checker will respond with a yes, and if it is not the case, the model checker
will answer with a no, and often supply a counter-example. To conduct the
verification in itself it is necessary to:

• Use the Model Checkers descriptive language to create a model M of
a system.

• Use the Model Checkers specification language to create the temporal
logical formulas φ.

• Supply M and φ as input to a Model Checker.

The model checker used in this thesis is the nuXmv model checker [3],
which extends the well-known NuSMV model checker [2].

3.1 Linear Time Temporal Logic
Linear Time Temporal Logic (LTL) is a logic with connectives for modelling
the future, by modelling time as a sequence of states. In LTL, the future
is not determined, and as such it is necessary to consider several different
paths.

LTL works with atomic formulas, such as p,q,r..., where each of these
atoms can represent an atomic fact, for example ”Add_filter is called”, ”The
Plugin is active” etc. LTL, however, cannot reason about the existence of
paths, this can be done in CTL (described in section 3.2).

3.1.1 Syntax
The syntax for LTL given in Backus Naur form is as follows [16]

12

φ := J | p | K | (φ) | (φ^φ) | (φ_φ) | (φÑ φ) | (Xφ) | (Fφ) | (Gφ) | (φUφ) | (φWφ) | (φRφ)

where p is any propositional atom.
The symbols J, K and φ (if φ) are all LTL formulas, as well as atoms.

The temporal connectives X,F,G, U,R and W represents the neXt state,
some Future state, Globally (all future states), Until, Release and Weak-
until.

An example of a LTL formula is G r_ q U p, which has been illustrated
in Figure 3.1. This implies a binding where unary connections binds the
most tightly (, X, F and G), then comes U,R and W . Next is _ and ^,
and lastly Ñ which has the loosest binding.

_

U

p

q

G

r

Figure 3.1: Figure of the LTL formula G r _ q U p.

3.1.2 Semantics
Formally, LTL is used to model transition systems with states and transitions,
where

Definition 1. A transition system M = (S,Ñ, L) is a model consisting of
a set of states S, a transition relation to, such that for every s P S there
exists some s1 P S with s Ñ S. Finally there is a labelling function L :
S Ñ P (Atoms), where P (Atoms) is the power set of atoms (for example the
power set of tp, qu is tHu, tpu, tqu, tp, qu).

The transition system M is modelled as a directed graph contain all
propositional atoms that is true in a given state, such as for example in

13

??. In the figure, there are three states; s1, s2 and s3, while the labels are
L(s0) = p, L(s1) = r, q and L(s2) = q, r. Formally,

Definition 2. In the model M = (S,Ñ, L) a path is an infinite sequence of
states s1, s2, s3.... P S such that for each i ě 1, si Ñ si+1. A path is denoted
as π.

With the above definition, the definition for satisfaction (|ù) is

Definition 3. The model M = (S,Ñ, L) and a path π = s1, s2, ... is satisfied
by the satisfaction relation |ù as follows [16]:

1. π |ù J

2. π |ù K

3. π |ù p iff p P L(s1)

4. π |ù φ iff π |ù φ

5. π |ù φ1 ^ φ2 iff π |ù φ1 and π |ù φ2

6. π |ù φ1 _ φ2 iff π |ù φ1 or π |ù φ2

7. π |ù φ1 Ñ φ2 iff π |ù φ2 when π |ù φ1

8. π |ù Xφ iff π2 |ù φ

9. π |ù G φ iff πi |ù φ for all i ě 1

10. π |ù F φ iff πi |ù φ for some i ě 1

11. π |ù φ U ψ iff there exist an i ě 1 such that πi |ù ψ and for all
j = 1, ..., i´ 1 it is the case that πj |ù φ

12. π |ù φ W ψ iff either there exist an i ě 1 such that πi |ù ψ and for all
j = 1, ..., i´ 1 it is the case that πj |ù φ; or for all k ě 1 it is the case
that πk |ù ψ

13. π |ù φ R ψ iff either there exist an i ě 1 such that πi |ù φ and for all
j = 1, ..., i´ 1 it is the case that πj |ù ψ; or for all k ě 1 it is the case
that πk |ù ψ

14

The first two clauses reflect that J is always true and K is always false.
Clause 3-7 is the clauses for the propositional logic. Clause 8 starts the path
at the second state, and clause 9 states that it is reachable from all other
paths, whereas clause 10 states that it is reachable from some path. Clause
11 states that φ1 holds until φ2 holds, and φ2 must hold in some future state,
whereas this last requirement is not present in clause 12. Clause 13 states
that ψ must remain true until φ becomes true.

To say that a system as a whole is satisfied, all execution paths satisfies
the LTL formula

Definition 4. If M = (S,Ñ, L) is a model, s P S and φ is an LTL formula.
Then M, s |ù φ if , for every execution path π of M , which starts at s, it is
the case that π |ù φ.

3.2 Computation Tree Logic
Computation Tree Logic (CTL) is a branching-time logic, meaning that CTL
reasons about individual paths, as opposed to LTL which only reasons about
all paths. This means that CTL can be used to reason about for example
in which order functions in a program was called, whereas LTL can only
detect that the function is called. As for LTL, the work is with a fixed set of
formulas.

Definition 5. CTL is defined in Backus Naur Form as follows:

φ := J | K | q | (φ) | (φ^ φ) | (φ_ φ) | (φÑ φ) | AXφ |

EXφ | AFφ | AGφ | EGφ | A[φUφ] | E[φUφ]

where p is the atomic formulas, as in LTL.

As opposed to LTL, each of the formulas consists of two symbols; A means
”along All paths”, whereas E means ”there Exist some path”. The other part
of the pair is, like in LTL, X, F , G, U means neXt state, some Future state,
Globally and Until.

3.2.1 Semantics
Much like LTL, the semantics of CTL is;

Definition 6. Let the model M = (S,Ñ, L) be a CTL model, s P S and φ
a CTL formula. M, s |ù φ is defined as the induction on φ [16];

1. M, s |ù J and M, s |ù K

15

2. M, s |ù q iff p P L(s)

3. M, s |ù φ iff M, s |ù φ

4. M, s |ù φ1 ^ φ2 iff M, s |ù φ1 and M, s |ù φ2

5. M, s |ù φ1 _ φ2 iff M, s |ù φ1 or M, s |ù φ2

6. M, s |ù φ1 Ñ φ2 iff M, s |ù φ1 or M, s |ù φ2

7. M, s |ù AX φ iff we have that sÑ s1 we have M, s1 |ù φ for all s1

8. M, s |ù EX φ iff we have that sÑ s1 we have M, s1 |ù φ for some s1

9. For M, s |ù AG φ we have that M, si |ù φ holds iff for all paths s1 Ñ
s2 Ñ s3..., where s1 equals s, and all si along the path

10. For M, s |ù EG φ we have that M, si |ù φ holds iff for some path
s1 Ñ s2 Ñ s3..., where s1 equals s, and all si along the path

11. For M, s |ù AF φ we have that M, si |ù φ holds iff for all paths s1 Ñ
s2 Ñ s3... where s1 equals s, and for some si along the path

12. For M, s |ù AF φ we have that M, si |ù φ holds iff for some path
s1 Ñ s2 Ñ s3... where s1 equals s, and for some si along the path

13. For M, s |ù A[φ1 U φ2] we have that M, si |ù φ holds iff for all paths
s1 Ñ s2 Ñ s3... where s1 equals s, that path satisfies φ1 U φ2

14. For M, s |ù E[φ1 U φ2] we have that M, si |ù φ holds iff for some path
s1 Ñ s2 Ñ s3... where s1 equals s, that path satisfies φ1 U φ2

The difference between LTL and CTL is that LTL cannot reason about
execution paths, whereas CTL can. LTL can, however, express some con-
structs that cannot be done in CTL, and vice-versa. Neither of the two logics
are able to track variables, although there has been an extension for CTL
which serves this purpose.

3.3 nuXmv
nuXmv is a continuation of the widely used NuSMV model checker. nuXmv
provides a language for describing the system model, along with support
for writing CTL and LTL specifications. When nuXmv finds a specification
where the model does not adhere to the specification it will print a counter
example.

16

4
Proof-of-concept solution

For detecting the incorrect function usage, a proof-of-concept solution has
been constructed. The solution parses a PHP Plugin, generates a nuXmv file,
with generated CTL and LTL formulas for detecting unclosed filters, and if
the following functions are being used;

• move_uploaded_file

• htmlentities

• htmlspecialchars

• preg_match

• mysqli_real_escape_string

• mysql_real_escape_string

The code is based on the C# implementation created by Jepsen, Nør-
toft and Vej[17], who have created a tool called Eir, which is an extendable
analysis tool. They implemented Taint Analysis to detect reflected XSS and
SQL Injections, while being able to track the data flow through the data-
base. Additionally, they made it possible to scan WordPress plugins, and at
present they have a module for managing get_options and set_options
and WordPress hooks.

17

4.1 Parsing
At first, a plugin is parsed from files to AST representations, which is then
used to create a Super-CFG, wherein the function calls are inlined. An
example can be seen in Listing 4.1, which is a simple PHP file that will print
out ”test”. The constructed CFG does not ensure that the code is actually
runnable, such as for example if too few arguments is supplied to a function.
The graph representation of the file can be seen in Figure 4.1, where the first
state is in the entry state, which will always be 0. The second state is the
assign statement from line 14, followed by state 3 as the variable declaration,
finally with the construction of the class with the new keyword. State 5 is
the method call in line 15, which will be inlined as line 8-13.

1 <?php
2 class ClassOne {
3 public $var1;
4 function __construct($var) {
5 $this->var1 = $var;
6 }
7

8 function printOut($extra) {
9 if ($extra)

10 $var = mysql_real_escape_string($extra);
11 echo $var;
12 }
13 }
14 $tmp = new ClassOne();
15 $tmp->printOut('text');

Listing 4.1: Test PHP file

18

0

2 Expr_Assign

1

3 Expr_Variable

4 Expr_New

5 Name

6 Expr_MethodCall

7 Stmt_If

8

T

9

F

10 Expr_Assign

13 Stmt_Echo

11 Expr_Variable

12 Expr_FuncCall

14 Expr_Variable

Figure 4.1: Super-CFG representation of the program in Listing 4.1

19

To handle function calls within different files, the parser will start by
parsing all the plugin files, and construct the list of functions and the AST
representation of the files. After this step, the parser will construct a Super-
CFG from each plugin file, and all function and method calls will be inlined,
including basic object oriented calls, as shown in Listing 4.1. In addition,
the parser is able to resolve variables, such that if a class function is called,
it will be possible to inline the called function. File inclusions are possible
by adding the Super-CFG of the file which has been included, and this will
be done when the nuXmv model is generated.

The parser is able to parse and inline the following WordPress specific
function calls;

• add_action

• add_filter

• add_menu_page

• add_submenu_page

• add_dashboard_page

• add_posts_page

• add_media_page

• add_links_page

• add_pages_page

• add_comments_page

• add_theme_page

• add_plugins_page

• add_users_page

• add_management_page

• add_options_page

• register_sidebar_widget

• wp_register_sidebar_widget

20

This is done by resolving the hook that the function hooks into, and then
inline the hooking function in the Super-CFG.

Finally, CTL and LTL requires all child nodes to have a self-loop, and
the code for this can be seen in Appendix A.

4.2 Creating the nuXmv model and formulas
The code for generating the nuXmv model can be seen in Appendix B and
Appendix C. The generator will build the model in a breath-first manner,
ensuring that nodes are only visited once to avoid loops. When a node is
processed, the node will create the CTLLTLNode object, resolve the names
of the node, and whether or not it is a function call. If it is a function call,
the call is stored, and it is checked if it is a call to apply_filter. If it is,
the filter is added to a list of detected filters. Each node will be given an
unique number corresponding to the node’s state. Once the node has been
generated, it will be added to a list of nodes, which is then ready for further
processing.

After node generation, the BFS checks if it is an include statement, and if
it is, another BFS search is launched recursively with the root of the included
file. This ensures that the model will correctly model plugins with included
files. Finally, the BFS will visit all child nodes of the node, and add them to
the queue for processing.

After the model has been created, the file is written to disc. This is done
by first writing a state called state, along with a boolean value for each filter
and incorrect function. The incorrect functions covered are;

• move_uploaded_file

• move_uploaded_file

• htmlspecialchars

• preg_match

• mysqli_real_escape_string

• mysql_real_escape_string

After the generation of the mode, the CTL specifications are generated,
and an example of the generated formulas are below, based on the analysis of
the Post Types Order[5] plugin. The first 6 are always included, whereas 7-13

21

is generated according to the created filters. The first 6 specifications check
if there exist a case in which one of the functions above has been found, that
is, the boolean corresponding to the function has been set to true. For the
filters, it is checked if every filter that has been opened is successfully closed.
In the formulas af means ”apply_filter” and rf means ”remove_filter”.

1. SPEC AG(move_uploaded_file = FALSE);

2. SPEC AG(htmlentities = FALSE);

3. SPEC AG(htmlspecialchars = FALSE);

4. SPEC AG(preg_match = FALSE);

5. SPEC AG(mysqli_real_escape_string = FALSE);

6. SPEC AG(mysql_real_escape_string = FALSE);

7. SPEC AG(EF(af_pre_get_posts = TRUE -> rf_pre_get_posts = Ðâ

TRUE));

8. SPEC AG(EF(af_posts_orderby = TRUE -> rf_posts_orderby = Ðâ

TRUE));

9. SPEC AG(EF(af_init = TRUE -> rf_init = TRUE));

10. SPEC AG(EF(af_get_previous_post_where = TRUE -> rf_get_previous_post_whereÐâ

= TRUE));

11. SPEC AG(EF(af_get_previous_post_sort = TRUE -> rf_get_previous_post_sortÐâ

= TRUE));

12. SPEC AG(EF(af_get_next_post_where = TRUE -> rf_get_next_post_whereÐâ

= TRUE));

13. SPEC AG(EF(af_get_next_post_sort = TRUE -> rf_get_next_post_sortÐâ

= TRUE));

After the file has been generated nuXmv is run on the file, and if some of
the formulas are false, the tool will print a counter-example.

22

4.2.1 Example
An example of the nuXmv model for Listing 4.1 can be seen in Listing 4.2.
The first line is the Module declaration, and the main module is the main
entry point. Line 3-7 is the variable declarations, with the state’s first, fol-
lowed by every function as a boolean value. Line 9-12 initialises the variables,
starting at state 1, and setting each boolean value to FALSE, as no functions
has been detected. Line 14-18 specifies the state transitions, and line 21-24
is generated based on which state the function call for the incorrect function
is in, in this case mysql_real_escape_string. Since an incorrect function
was detected, the value of the boolean is set to TRUE. nuXmv requires all
paths to be exhaustive, which is the reason for line 23, which will keep the
value of the boolean as-is. Line 26-28 is the specifications.

1 MODULE main
2

3 VAR
4 state: {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
5 move_uploaded_file : boolean;
6 htmlentities : boolean;
7 ...
8

9 ASSIGN
10 init(state) := 1;
11 init(move_uploaded_file) := FALSE;
12 ...
13

14 next(state) := case
15 (state=1) : {2};
16 (state=2) : {3};
17 ...
18 esac;
19 ...
20

21 next(mysql_real_escape_string) := case
22 state=14 : TRUE;
23 TRUE : mysql_real_escape_string;
24 esac;
25

26 ...
27 SPEC AG(mysqli_real_escape_string = FALSE);
28 ...

Listing 4.2: nuXmv model for Listing 4.1

Running nuXmv on the model and specification from Listing 4.2 yields
the result from Listing 4.3. Line 1 and 2 is the specifications which are true

23

on the model. Line 3-18 is the proof for the specification being false, that
is, there exist an mysql_real_escape_string function call in the program,
which is in Listing 4.1 line 10.

1 ...
2 -- specification AG mysqli_real_escape_string = FALSE is true
3 -- specification AG mysql_real_escape_string = FALSE is false
4 -- as demonstrated by the following execution sequence
5 Trace Description: CTL Counterexample
6 Trace Type: Counterexample
7 -> State: 1.1 <-
8 state = 1
9 move_uploaded_file = FALSE

10 htmlentities = FALSE
11 htmlspecialchars = FALSE
12 preg_match = FALSE
13 mysqli_real_escape_string = FALSE
14 mysql_real_escape_string = FALSE
15 -> State: 1.2 <-
16 ...
17 state = 9
18 mysql_real_escape_string = TRUE

Listing 4.3: nuXmv output for Listing 4.2

4.3 Testing
The implementation is tested on 5 WordPress plugins; OpenFilter (see Ap-
pendix D), Form Maker [1], Post Types Order [5], Shortcodes Ultimate[7]
and WordPress SEO by Yoast [14]. These plugins were selected randomly
among the most popular plugins. The execution time has not been measured,
as it finishes within a few minutes. None of the analysed plugins contained
security errors apart from filters. The test files and graphs can be found on
the attached CD.

4.3.1 OpenFilter
OpenFilter is a plugin that adds a filter which allows the upload of PHP
files, but does not close it. This is a vulnerability, and it is detected, as seen
in Appendix D. This can be quite a severe vulnerability, since every upload
function using the WordPress mime filter will allow the uploading of PHP
files.

24

4.3.2 Form Maker
Form Maker is a plugin for creating forms [1]. The plugin makes use of 5
filters, and none of these are closed, however only 4 of the open filters are
detected. 4 of the filters are used internally by the plugin only, but if another
plugin emerges with the same filter names (which should never happen), this
can cause a conflict. The last filter modifies one of the WordPress standard
filters; the the_content filter for content. Depending on what the opening
of the filter does, this can cause issues.

4.3.3 Post Types Order
Post Types Order is a plugin for ordering posts and post types [5]. The
plugin makes use of 7 filters, and does not close any of the filters. Most of
these filters has generic names such as _init, so this can cause a potential
clash with other plugins, which can cause unintended side effects.

4.3.4 Shortcodes Ultimate and WordPress SEO by Yoast
Shortcodes Ultimate provides shortcodes for a lot of different tasks [7]. Word-
Press SEO is a plugin for doing search engine optimisation [14]. None of these
plugins had forgotten open filters, but a clash happened between WordPress
SEO and a plugin called BBPress, because it hooked into a WordPress func-
tion too early [13]. This might have been possible to avoid if proper filtering
had been conducted.

25

5
Conclusion

This thesis explores the creation of WordPress plugins that makes use of
the WordPress functions instead of the PHP supplied ones, or home-made
sanitisation functions. WordPress itself consists of a secure core, and the
WordPress developers focuses a lot on security. However, this is not always
the case for plugins and themes, where these can be created insecurely.

WordPress supplies functions for sanitisation of data, database access, file
manipulation, and so on. Yet, not all developers make use of these functions
correctly. Additionally, WordPress allows developers to change the internal
workings of WordPress by overwriting the WordPress filters, and if these are
not closed once the plugin developer is done, this might have unintended side
effects.

Model Checking is used to detect incorrect function usage, along with
open filters, and Computation Tree Logic and Linear Temporal Logic is used
to reason about the model. The Model Checker nuXmv is used, and the
model is generated using a proof-of-concept that is aware of WordPress spe-
cific function calls and workings, and able to generate CTL and LTL spe-
cifications for checking for incorrect functions, and open filters.

Testing of the tool shows that it does find some open filters, but that it
is still clear that it is a proof-of-concept solution.

26

Bibliography

[1] Form-Maker version 1.7.47, Accessed 2. June, 2015. URL https://
wordpress.org/plugins/form-maker/.

[2] NuSMV: a new symbolic model checker, Accessed 2. June, 2015. URL
http://nusmv.fbk.eu/.

[3] The nuXmv model checker, Accessed 2. June, 2015. URL https://
nuxmv.fbk.eu/.

[4] OWASP project 2013 Top 10, Accessed 2. June, 2015. URL https:
//www.owasp.org/index.php/Top_10_2013-Top_10.

[5] post-types-order version 1.7.9, Accessed 2. June, 2015. URL https:
//wordpress.org/plugins/post-types-order.

[6] Programming Language Popularity, Accessed 2. June, 2015. URL http:
//langpop.com/.

[7] Shortcodes Ultimate version 4.9.7, Accessed 2. June, 2015. URL https:
//wordpress.org/plugins/shortcodes-ultimate/.

[8] Sony Pictures Hacked: the full story | The Verge, Accessed 2.
June, 2015. URL https://www.theverge.com/2014/12/8/7352581/
sony-pictures-hacked-storystream.

[9] TIOBE Software: Tiobe Index, Accessed 2. June, 2015. URL http://
www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

27

[10] Usage Statistics and Market Share of PHP for Websites, Accessed
2. June, 2015. URL http://w3techs.com/technologies/details/
pl-php/all/all.

[11] Version2: CSC hack (Danish), Accessed 2. June,
2015. URL http://www.version2.dk/artikel/
rigspolitiet-koerekort-register-hos-csc-er-blevet-hacket-52368.

[12] Washington Post, Accessed 2. June, 2015. URL http:
//www.washingtonpost.com/blogs/the-switch/wp/2015/05/14/
the-syrian-electronic-army-just-hacked-the-washington-post-again/.

[13] WordPress SEO by Yoast Changelog for 2.1.1, Accessed 2. June, 2015.
URL https://wordpress.org/plugins/wordpress-seo/changelog.

[14] WordPress SEO by Yoast version 2.1.1, Accessed 2. June, 2015. URL
https://wordpress.org/plugins/wordpress-seo/.

[15] WordPress › Plugin Security | Plugin Developer Handbook | Word-
Press Developer Resources, Accessed 2. June, 2015. URL https:
//developer.wordpress.org/plugins/security/.

[16] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and Reasoning About Systems. Cambridge University Press, New York,
NY, USA, 2004. ISBN 052154310X.

[17] Kenneth Jepsen, Morten Nørtoft, and Mikkel Vej. Eir - Static Vulner-
ability Detection in PHP Applications. 2015.

[18] Jens Thomas Vejlby Nielsen. Securing Web Applications. 2015.

[19] Sara Rosso, with contributions from Barry Abrahamson, Michael
Adams, Jon Cave, Helen HouSandí, Dion Hulse, Mo Jangda, and Paul
Maiorana. WordPress Security White Paper. https://wordpress.org/-
about/security/, Version 1.0, March 2015.

28

A
Adding self-loops

1 using QuickGraph;
2 using PHPAnalysis.Data.CFG;
3 using System.Linq;
4

5 namespace PHPAnalysis
6 {
7 public interface ICFGCTLPreparation
8 {
9 void AddSelfLoops (BidirectionalGraph<CFGBlock, TaggedEdge<Ðâ

CFGBlock, EdgeTag>> graph);
10 }
11

12 public sealed class CFGCTLPreparation : ICFGCTLPreparation
13 {
14 //Preparation for CTL requires all nodes without an outgoing Ðâ

edge to have a loop to self
15

16 public void AddSelfLoops (BidirectionalGraph<CFGBlock, Ðâ

TaggedEdge<CFGBlock, EdgeTag>> graph)
17 {
18 foreach (var vertex in graph.Vertices)
19 {
20 if (!graph.OutEdges(vertex).Any())
21 {
22 graph.AddEdge (new TaggedEdge<CFGBlock, EdgeTag> (Ðâ

vertex, vertex, new EdgeTag (EdgeType.Normal)));
23 }
24 }
25 }
26 }

29

27 }

30

B
Creating the nuXmv model

1 using System;
2 using QuickGraph;
3 using PHPAnalysis.Data.CFG;
4 using System.Threading;
5 using System.Threading.Tasks;
6 using QuickGraph.Algorithms;
7 using System.Linq;
8 using PHPAnalysis.Utils;
9 using System.Collections;

10 using System.Collections.Generic;
11 using PHPAnalysis.Data;
12 using PHPAnalysis.Utils.XmlHelpers;
13 using PHPAnalysis.Analysis.AST;
14 using PHPAnalysis.Data;
15 using File = PHPAnalysis.Data.File;
16 using System.Diagnostics;
17

18

19 namespace PHPAnalysis.Analysis.CTLLTL
20 {
21 public class CTLLTL
22 {
23

24 private BidirectionalGraph<CFGBlock, TaggedEdge<CFGBlock, Ðâ

EdgeTag>> graph;
25 private List<CTLLTLNode> nodeList = new List<CTLLTLNode> ();
26 private IncludeResolver resolver;
27

28

29 //Simple proof-of-concept list of functions to watch out for

31

30 private readonly string[] _AlertFunctions = {
31 //Filters
32 // "add_filter",
33 // "remove_filter",
34

35 //Upload
36 "move_uploaded_file",
37

38 //XSS
39 "htmlentities",
40 "htmlspecialchars",
41 "preg_match",
42

43 //SQL Injection
44 "mysqli_real_escape_string",
45 "mysql_real_escape_string"
46 };
47

48 public CTLLTL ()
49 {
50 }
51

52 private HashSet<string> filterList = new HashSet<string> ();
53

54 private void GetBlockName (CTLLTLNode block)
55 {
56 string nodeName = (nodeList.Count + 1).ToString ();
57 if (block.block.IsSpecialBlock || block.block.AstEntryNode Ðâ

== null) {
58

59 } else {
60 switch (block.block.AstEntryNode.LocalName) {
61 case (AstConstants.Nodes.Expr_FuncCall):
62 case (AstConstants.Nodes.Expr_MethodCall):
63 string methodName = "";
64 try{methodName = block.block.AstEntryNode.GetSubNode (Ðâ

AstConstants.Subnode + ":" + AstConstants.Subnodes.Ðâ

Name).FirstChild.GetSubNode (AstConstants.Subnode + Ðâ

":" + AstConstants.Subnodes.Parts).InnerText;} catchÐâ

(Exception e){};
65 if (methodName == "add_filter") {
66 var filterName = block.block.AstEntryNode.GetSubNode (Ðâ

AstConstants.Subnode + ":" + AstConstants.SubnodesÐâ

.Args)
67 .FirstChild.FirstChild
68 .GetSubNode (AstConstants.Subnode + ":" + Ðâ

AstConstants.Subnodes.Value).FirstChild.Ðâ

LastChild.InnerText;
69 block.methodName = methodName;

32

70 block.filterName = filterName;
71 filterList.Add (filterName);
72 } else
73 block.methodName = methodName;
74 nodeName = nodeName + "Call_" + block.methodName;
75 break;
76 default:
77 nodeName = nodeName + block.block.AstEntryNode.Ðâ

LocalName.ToLower ();
78 break;
79 }
80 //Handle the harder cases!
81 }
82 block.nodeName = nodeName;
83 }
84

85 //HashSet<CFGBlock> CnodesVisited = new HashSet<CFGBlock>();
86 private CTLLTLNode MakeCNode (CFGBlock block)
87 {
88

89 var v = Stopwatch.StartNew();
90 if (nodeList.Exists (x => x.block == block))
91 return null;
92 v.Stop();
93

94 var cNode = new CTLLTLNode ();
95 cNode.block = block;
96 GetBlockName (cNode);
97 cNode.nodeName = nodeList.Count + 1 + "";
98 nodeList.Add (cNode);
99 //CnodesVisited.Add(cNode.block);

100 if (cNode.block.AstEntryNode != null && (nodeList.Count % Ðâ

1000) == 0)
101 Console.WriteLine("Added node: " + cNode.block.Ðâ

AstEntryNode.LocalName + " total in list: " + Ðâ

nodeList.Count + " Loop took: " + v.Elapsed);
102 return cNode;
103 }
104

105

106 //Really not a pretty way to make this, but it works
107 private void WriteToFile (string path)
108 {
109 using (System.IO.StreamWriter file = new System.IO.Ðâ

StreamWriter (path)) {
110 string s = " ";
111 string states = "";
112 Console.WriteLine("Writing var declarations...");
113 foreach (var v in nodeList)

33

114 states += v.nodeName + ",";
115 states = states.Remove (states.Length - 1); //Remove the Ðâ

last ,
116

117 file.WriteLine ("MODULE main");
118 file.WriteLine ();
119 file.WriteLine ("VAR");
120 file.WriteLine (s + "state: {" + states + "};");
121

122 foreach (var v in _AlertFunctions) {
123 file.WriteLine (s + v + " : boolean;");
124 }
125

126 foreach (var v in filterList) {
127 file.WriteLine (s + "af_" + v + ": boolean;");
128 file.WriteLine (s + "rf_" + v + ": boolean;");
129 }
130

131 Console.WriteLine("Writing Assignments...");
132 file.WriteLine ();
133 file.WriteLine ("ASSIGN");
134 file.WriteLine (s + "init(state) := " + nodeList [0].Ðâ

nodeName + ";");
135 foreach (var v in _AlertFunctions) {
136 file.WriteLine (s + "init(" + v + ") := FALSE;");
137 }
138

139 foreach (var v in filterList) {
140 file.WriteLine (s + "init(af_" + v + ") := FALSE;");
141 file.WriteLine (s + "init(rf_" + v + ") := FALSE;");
142 }
143

144 Console.WriteLine("Writing state if's");
145 file.WriteLine ();
146 file.WriteLine ("next(state) := case");
147 foreach (var v in nodeList) {
148 file.WriteLine (s + v.nodeText);
149 }
150

151 file.WriteLine (s + "esac;");
152

153 Console.WriteLine("Writing filters and alert functions...Ðâ

");
154 WriteSpecialStuff (file);
155

156 Console.WriteLine("Generating Specification..");
157 GenSpec (file);
158 }
159 }

34

160

161 private void GenSpec (System.IO.StreamWriter file)
162 {
163 file.WriteLine();
164 foreach (var s in _AlertFunctions)
165 {
166 file.WriteLine("SPEC AG(" + s +" = FALSE);");
167 }
168

169 foreach (var filter in filterList)
170 {
171 file.WriteLine("SPEC AG(EF(af_" + filter + " = TRUE -> Ðâ

rf_" +filter+" = TRUE));");
172 }
173 }
174 private void WriteSpecialStuff (System.IO.StreamWriter file)
175 {
176 Console.WriteLine("Functions...");
177 foreach (string node in _AlertFunctions) {
178 List<CTLLTLNode> list = nodeList.FindAll (v => v.Ðâ

methodName == node);
179 file.WriteLine ();
180 file.WriteLine ("next(" + node + ") := case");
181 foreach (var q in list) {
182 file.WriteLine ("state" + "=" + q.nodeName + " : TRUE;");
183 }
184 file.WriteLine ("TRUE : " + node + ";");
185 file.WriteLine ("esac;");
186 }
187

188 Console.WriteLine("Filters...");
189 foreach (string filtername in filterList) {
190 List<CTLLTLNode> nlist = nodeList.FindAll (v => v.Ðâ

filterName == filtername && v.methodName == "Ðâ

add_filter");
191 file.WriteLine ("next(af_" + filtername + ") := case");
192 foreach (var node in nlist) {
193 file.WriteLine ("state =" + node.nodeName + " : TRUE;");
194 }
195 file.WriteLine ("TRUE : af_" + filtername + ";");
196 file.WriteLine ("esac;");
197

198 nlist = nodeList.FindAll (v => v.filterName == filternameÐâ

&& v.methodName == "remove_filter");
199 file.WriteLine ("next(rf_" + filtername + ") := case");
200 foreach (var node in nlist) {
201 file.WriteLine ("state =" + node.nodeName + " : TRUE;");
202 }
203 file.WriteLine ("TRUE : rf_" + filtername + ";");

35

204 file.WriteLine ("esac;");
205 }
206 }
207

208 private void GenerateIf ()
209 {
210 //This was slow before... now it is significantly quicker
211 Parallel.ForEach(nodeList, cNode => {
212 var v = Stopwatch.StartNew();
213 cNode.nodeText = "(state=" + cNode.nodeName + ") : {";
214 foreach (var edge in cNode.graph.OutEdges(cNode.block)) {
215 cNode.nodeText += nodeList.Find (x => x.block == edge.Ðâ

Target).nodeName + ",";
216 }
217 cNode.nodeText = cNode.nodeText.Remove (cNode.nodeText.Ðâ

Length - 1); //Remove last ,
218 cNode.nodeText += "};";
219

220 v.Stop();
221 int number;
222 bool result = Int32.TryParse(cNode.nodeName, out number);
223 if (result && (number % 1000) == 0)
224 Console.WriteLine("Generated if for node: " + cNode.Ðâ

nodeName + " of " + nodeList.Count + " it took: " + Ðâ

v.Elapsed);
225 });
226 }
227

228

229 HashSet<CFGBlock> visited = new HashSet<CFGBlock> ();
230 HashSet<File> inFile = new HashSet<File>();
231 int BFSRUNS = 1;
232 int activebfs = 1;
233 private void BFS (CFGBlock root, BidirectionalGraph<CFGBlock,Ðâ

TaggedEdge<CFGBlock, EdgeTag>> _graph)
234 {
235 Console.WriteLine("Total BFS recursions: " + BFSRUNS + " Ðâ

Active BFS: " + activebfs + " nodes currently in graph:Ðâ

" + nodeList.Count);
236 BFSRUNS++;
237 activebfs++;
238 Queue<CFGBlock> queue = new Queue<CFGBlock> ();
239 queue.Enqueue (root);
240 while (queue.Any ()) {
241 var node = queue.Dequeue ();
242 if (visited.Contains(node))
243 continue;
244 visited.Add (node);
245 var cNode = MakeCNode (node);

36

246 if (cNode != null)
247 cNode.graph = _graph;
248

249 if (node.AstEntryNode != null && node.AstEntryNode.Ðâ

LocalName == AstConstants.Nodes.Expr_Include) {
250 File output = null;
251 resolver.TryResolveInclude (node.AstEntryNode, out Ðâ

output);
252 if (output != null && !inFile.Contains(output)) {
253 var _root = output.CFG.Roots ().Single (v => v.Ðâ

IsSpecialBlock);
254 inFile.Add(output);
255 //Console.WriteLine("Recursive call: " + output.Name);
256 BFS (_root, (BidirectionalGraph<CFGBlock, TaggedEdge<Ðâ

CFGBlock, EdgeTag>>)output.CFG);
257 //Console.WriteLine("Finished call: " + output.Name);
258 //Console.WriteLine("Still " + inFile.Count() + " Ðâ

files left");
259 inFile.Remove(output);
260 }
261 }
262

263 foreach (var edge in _graph.OutEdges(node))
264 if (!visited.Contains (edge.Target)) //No loops, please
265 queue.Enqueue (edge.Target);
266 }
267 activebfs--;
268 }
269

270 public void makeModel (BidirectionalGraph<CFGBlock, Ðâ

TaggedEdge<CFGBlock, EdgeTag>> graph, IncludeResolver Ðâ

resolver, string path)
271 {
272 this.graph = graph;
273 this.resolver = resolver;
274 var root = graph.Roots ().Single (v => v.IsSpecialBlock);
275

276 BFS (root, this.graph);
277

278 Console.WriteLine("Finished BFS Traversal, generating if Ðâ

sentences...");
279 GenerateIf ();
280

281 Console.WriteLine("Writing to file...");
282 WriteToFile (path);
283 }
284 }
285 }

37

C
CTLLTLNode

1 using System;
2 using PHPAnalysis.Data.CFG;
3 using QuickGraph;
4

5 namespace PHPAnalysis
6 {
7 public class CTLLTLNode
8 {
9 public CFGBlock block { get; set; }

10

11 public string nodeName { get; set; }
12

13 public string nodeText { get; set; }
14

15 public string methodName = null;
16

17 public string filterName = null;
18

19 public BidirectionalGraph<CFGBlock, TaggedEdge<CFGBlock, Ðâ

EdgeTag>> graph;
20 }
21 }

38

D
OpenFilter

D.1 OpenFilter code

1 <?php
2 /*
3 Plugin Name: Open Filter
4 Description: Opens a filter for uploading PHP files - very Ðâ

vulnerable!
5 Version: 1.0
6 Author: Thomas Vejlby Nielsen
7 Author URI: http://jtvn.dk
8 */
9

10 function openfilter_upload_mimes ($existing_mimes=array()) {
11 $existing_mimes['php'] = 'file/php';
12 return $existing_mimes;
13 }
14

15 add_filter('upload_mimes', 'openfilter_upload_mimes');
16

17 //Do stuff that requires uploading PHP files using the WordPressÐâ

upload functions..

39

40

D.2 OpenFilter graph

0

2 Expr_FuncCall

1

3 Expr_Assign

4 Expr_ArrayDimFetch

5 Scalar_String

6 Stmt_Return

Figure D.1: OpenFilter Super-CFG
41

D.3 OpenFilter model

1 MODULE main
2

3 VAR
4 state: {1,2,3,4,5,6,7};
5 move_uploaded_file : boolean;
6 htmlentities : boolean;
7 htmlspecialchars : boolean;
8 preg_match : boolean;
9 mysqli_real_escape_string : boolean;

10 mysql_real_escape_string : boolean;
11 af_upload_mimes: boolean;
12 rf_upload_mimes: boolean;
13

14 ASSIGN
15 init(state) := 1;
16 init(move_uploaded_file) := FALSE;
17 init(htmlentities) := FALSE;
18 init(htmlspecialchars) := FALSE;
19 init(preg_match) := FALSE;
20 init(mysqli_real_escape_string) := FALSE;
21 init(mysql_real_escape_string) := FALSE;
22 init(af_upload_mimes) := FALSE;
23 init(rf_upload_mimes) := FALSE;
24

25 next(state) := case
26 (state=1) : {2};
27 (state=2) : {3};
28 (state=3) : {4};
29 (state=4) : {5};
30 (state=5) : {6};
31 (state=6) : {7};
32 (state=7) : {7};
33 esac;
34

35 next(move_uploaded_file) := case
36 TRUE : move_uploaded_file;
37 esac;
38

39 next(htmlentities) := case
40 TRUE : htmlentities;
41 esac;
42

43 next(htmlspecialchars) := case
44 TRUE : htmlspecialchars;
45 esac;

42

46

47 next(preg_match) := case
48 TRUE : preg_match;
49 esac;
50

51 next(mysqli_real_escape_string) := case
52 TRUE : mysqli_real_escape_string;
53 esac;
54

55 next(mysql_real_escape_string) := case
56 TRUE : mysql_real_escape_string;
57 esac;
58 next(af_upload_mimes) := case
59 state =2 : TRUE;
60 TRUE : af_upload_mimes;
61 esac;
62 next(rf_upload_mimes) := case
63 TRUE : rf_upload_mimes;
64 esac;
65

66 SPEC AG(move_uploaded_file = FALSE);
67 SPEC AG(htmlentities = FALSE);
68 SPEC AG(htmlspecialchars = FALSE);
69 SPEC AG(preg_match = FALSE);
70 SPEC AG(mysqli_real_escape_string = FALSE);
71 SPEC AG(mysql_real_escape_string = FALSE);
72 SPEC AG(EF(af_upload_mimes = TRUE -> rf_upload_mimes = TRUE));

D.4 OpenFilter nuXmv result

1 *** This is nuXmv 1.0.1 (compiled on Mon Nov 17 16:49:54 2014)
2 *** Copyright (c) 2014, Fondazione Bruno Kessler
3

4 *** For more information on nuXmv see https://nuxmv.fbk.eu
5 *** or email to <nuxmv@list.fbk.eu>.
6 *** Please report bugs at https://nuxmv.fbk.eu/bugs
7 *** (click on "Login Anonymously" to access)
8 *** Alternatively write to <nuxmv@list.fbk.eu>.
9

10 *** This version of nuXmv is linked to NuSMV 2.5.trunk.
11 *** For more information on NuSMV see <http://nusmv.fbk.eu>
12 *** or email to <nusmv-users@list.fbk.eu>.
13 *** Copyright (C) 2010-2014, Fondazione Bruno Kessler
14

15 *** This version of nuXmv is linked to the CUDD library version Ðâ

2.4.1
16 *** Copyright (c) 1995-2004, Regents of the University of Colorado

43

17

18 *** This version of nuXmv is linked to the MiniSat SAT solver.
19 *** See http://minisat.se/MiniSat.html
20 *** Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
21 *** Copyright (c) 2007-2010, Niklas Sorensson
22

23 *** This version of nuXmv is linked to MathSAT
24 *** Copyright (C) 2014 by Fondazione Bruno Kessler
25 *** Copyright (C) 2014 by University of Trento
26 *** See http://mathsat.fbk.eu
27

28 -- specification AG move_uploaded_file = FALSE is true
29 -- specification AG htmlentities = FALSE is true
30 -- specification AG htmlspecialchars = FALSE is true
31 -- specification AG preg_match = FALSE is true
32 -- specification AG mysqli_real_escape_string = FALSE is true
33 -- specification AG mysql_real_escape_string = FALSE is true
34 -- specification AG (EF (af_upload_mimes = TRUE -> Ðâ

rf_upload_mimes = TRUE)) is false
35 -- as demonstrated by the following execution sequence
36 Trace Description: CTL Counterexample
37 Trace Type: Counterexample
38 -> State: 1.1 <-
39 state = 1
40 move_uploaded_file = FALSE
41 htmlentities = FALSE
42 htmlspecialchars = FALSE
43 preg_match = FALSE
44 mysqli_real_escape_string = FALSE
45 mysql_real_escape_string = FALSE
46 af_upload_mimes = FALSE
47 rf_upload_mimes = FALSE
48 -> State: 1.2 <-
49 state = 2
50 -> State: 1.3 <-
51 state = 3
52 af_upload_mimes = TRUE

44

E
CD

This page is intentionally left blank.

45

	Introduction
	WordPress
	Securing WordPress
	Preventing Cross Site Scripting in WordPress
	SQL Injections

	Actions and filters

	Model Checking
	Linear Time Temporal Logic
	Syntax
	Semantics

	Computation Tree Logic
	Semantics

	nuXmv

	Proof-of-concept solution
	Parsing
	Creating the nuXmv model and formulas
	Example

	Testing
	OpenFilter
	Form Maker
	Post Types Order
	Shortcodes Ultimate and WordPress SEO by Yoast

	Conclusion
	Bibliography
	Adding self-loops
	Creating the nuXmv model
	CTLLTLNode
	OpenFilter
	OpenFilter code
	OpenFilter graph
	OpenFilter model
	OpenFilter nuXmv result

	CD

